O K L A H O M A S T A T E U N I V E R S I T Y SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 Linear System Spring 1998
Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Determine an observable canonical form realization (in minimal order) for discrete-time system

$$
k y(k+3)+\cos k y(k+2)+k^{2} y(k)=e^{-k} u(k+3)+(k+1) u(k+1)+e^{-k^{2}} u(k) .
$$

Notice that gain block maybe k dependent. Show the simulation diagram and its corresponding state space representation.

Problem 2:

Given

$$
A(t)=\left[\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right]
$$

show that

$$
\operatorname{det} \Phi\left(t, t_{0}\right)=\exp \left[\int_{t_{0}}^{t}\left(a_{11}(\tau)+a_{22}(\tau)\right) d \tau\right]
$$

where $\partial \Phi\left(t, t_{0}\right) / \partial t=A(t) \Phi\left(t, t_{0}\right)$ and $\Phi\left(t_{0}, t_{0}\right)=I$.
(hint: begin with $\frac{\partial}{\partial t} \operatorname{det} \Phi\left(t, t_{0}\right)$)

Problem 3:

For a given matrix

$$
A=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & \lambda & 0 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right],
$$

find $\ln A$ (i.e., $\lambda>0$).

Problem 4:

Consider the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_{n} & -\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_{1}
\end{array}\right]
$$

Show that the characteristic polynomial of A is

$$
\Delta(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+\alpha_{1} \lambda^{n-1}+\alpha_{2} \lambda^{n-2}+\cdots+\alpha_{n-1} \lambda+\alpha_{n} .
$$

If λ_{1} is an eigenvalue of A (i.e., $\Delta\left(\lambda_{1}\right)=0$), show that $\left[\begin{array}{lllll}1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1}\end{array}\right]^{T}$ is an eigenvector associated with λ_{1}.

Problem 5:

Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find $e^{A t}$ (hint: using Inverse Laplace transform).

